| Domain | Code | Standard Description | Essential Vocabulary |
| :---: | :---: | :---: | :---: |
| би!̣и!чц ग!eגqәб\|甘 pue suo!̣e.əәdo | 3.0A. 3 | Using drawings and equations with a symbol for an unknown number, solve multiplication and division word problems within 100 in situations involving equal groups, arrays, and measurement quantities. | equation, unknown number, array |
|  | 3.0A.5 | Apply properties of operations as strategies to multiply and divide (without the use of formal terms). | Score 5 |
|  | 3.0A. 7 | Using mental strategies, fluently multiply and divide within 100. |  |
|  | 3.0A. 8 | Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. <br> Assess the reasonableness of answers using mental computation and estimation strategies. | variable, reasonableness, estimation |
|  | 3.NBT. 1 | Use place value understanding to round whole numbers to the nearest 10 or 100. | Score 5 |
|  | 3.NBT. 2 | Using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction, fluently add and subtract within 1000 . | place value, order of operation, fluency |
| Number and Operations - Fractions | 3.NF. 1 | Understand a fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into $b$ equal parts. <br> Understand a fraction $a / b$ as the quantity formed by "a" parts of size $1 / b$. | fraction |
|  | 3.NF. 2 | Understand a fraction as a number on the number line; represent fractions on a number line diagram. <br> a) Represent a fraction $1 / b$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into $b$ equal parts. <br> Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line. <br> b) Represent a fraction $a / b$ on a number line diagram by marking off a lengths $1 / b$ from 0. <br> Recognize that the resulting interval has size $a / b$ and that its endpoint locates the number $a / b$ on the number line. | number line |

SEEC
MOEC MREC

|  | 3.NF. 3 | Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. <br> a) Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line. Recognize and generate simple equivalent fractions. <br> b) Explain why the fractions are equivalent using a visual fraction model. <br> c) Recognize fractions, a/1 or a/a, that are equivalent to whole numbers. Express whole numbers as fractions, a/1 or a/a. <br> d) Compare two fractions with the same numerator or the same denominator by reasoning about their size. <br> e) Recognize that comparisons are valid only when the two fractions refer to the same whole. <br> f) Record the results of comparisons with the symbols >, =, or <, and justify the conclusions by using a visual fraction model. | equivalent, compare, numerator, denominator |
| :---: | :---: | :---: | :---: |
|  | 3.MD. 1 | Tell and write time to the nearest minute and measure time intervals in minutes. Solve elapsed time word problems on the hour and the half hour, using a variety of strategies. | minute, hour, elapsed time, interval |
|  | 3.MD. 4 | Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. <br> Show the data by making a line plot, where the horizontal scale is marked in appropriate units-whole numbers, halves, or quarters. | halves, fourths, quarters, line plot, horizontal |
|  | $3 . M D .7$ | Relate area to the operations of multiplication and addition. <br> a) Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths. <br> b) Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent wholenumber products as rectangular areas in mathematical reasoning. <br> c) Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths $a$ and $b+c$ is the sum of $a \times b$ and $a \times c$. Use area models to represent the distributive property in mathematical reasoning. <br> d) Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems | area, products |

SEEC
MIDEC MREC

|  | 3.MD. 8 | Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths. <br> Find an unknown side length. <br> Exhibit rectangles with the same perimeter and different area or with the same area and different perimeters | perimeters, polygons |
| :---: | :---: | :---: | :---: |
| 긍잉© | 3.G. 1 | Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). <br> Recognize rhombuses, rectangles, and squares as examples of quadrilaterals. Draw examples of quadrilaterals that do not belong to any of these subcategories | attributes, rhombus, rectangle, square, quadrilateral |
|  | 3.G. 2 | Partition shapes into parts with equal areas. <br> Express the area of each part as a unit fraction of the whole. | Score 5 equal parts, unit fraction |

